Minimal Solvers for Relative Pose with a Single Unknown Radial Distortion

Yubin Kuang, Jan Erik Solem, Fredrik Kahl, Karl Åström

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this paper, we study the problems of estimating relative
pose between two cameras in the presence of radial distortion.
Specifically, we consider minimal problems where
one of the cameras has no or known radial distortion. There
are three useful cases for this setup with a single unknown
distortion: (i) fundamental matrix estimation where the two
cameras are uncalibrated, (ii) essential matrix estimation
for a partially calibrated camera pair, (iii) essential matrix
estimation for one calibrated camera and one camera
with unknown focal length. We study the parameterization
of these three problems and derive fast polynomial solvers
based on Gr¨obner basis methods. We demonstrate the numerical
stability of the solvers on synthetic data. The minimal
solvers have also been applied to real imagery with
convincing results.
Originalspråkengelska
Titel på värdpublikationComputer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor33-40
Antal sidor8
DOI
StatusPublished - 2014
EvenemangIEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), 2014 - Columbus, Ohio, USA
Varaktighet: 2014 juni 242014 juni 27

Publikationsserier

Namn
ISSN (tryckt)1063-6919

Konferens

KonferensIEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), 2014
Land/TerritoriumUSA
OrtColumbus, Ohio
Period2014/06/242014/06/27

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Minimal Solvers for Relative Pose with a Single Unknown Radial Distortion”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här