Modeling Artificial Neural Networks to Predict Asbestos-containing Materials in Residential Buildings

Pei-Yu Wu, Mikael Mangold, Claes Sandels, Tim Johansson, Kristina Mjörnell

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review


The presence of hazardous materials inhibits material circularity. The existing residential buildings are exposed to the risk of the unforeseen presence of asbestos-containing materials during the demolition or renovation process. Estimating the potential occurrence of contaminated building components can therefore facilitate semi-selective demolition and decontamination planning. The study aims to investigate the prediction possibility of seven frequently detected asbestos-containing materials by using artificial neural networks based on a hazardous material dataset from pre-demolition audit inventories and national building registers. Through iterative model evaluation and careful hyperparameter tuning, the prediction performance for each asbestos-containing material was benchmarked. A high level of accuracy was obtained for asbestos pipe insulation and ventilation channel, yet barely any patterns were found for asbestos floor mats. Artificial neural networks show potential for classifying specific asbestos components and can enhance the knowledge of their detection patterns. However, more quality data are needed to bring the models into practice for risk assessment for not yet inventoried residential buildings. The proposed screening approach for in situ asbestoscontaining materials has high applicability for the quality assurance of recycled materials in circular value chains.

Titel på värdpublikationIOP Conference Series: Earth and Environmental Science
Antal sidor8
StatusPublished - 2022 dec.

Ämnesklassifikation (UKÄ)

  • Husbyggnad


Utforska forskningsämnen för ”Modeling Artificial Neural Networks to Predict Asbestos-containing Materials in Residential Buildings”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här