Modular counting of subgraphs: Matchings, matching-splittable graphs, and paths

Radu Curticapean, Holger Dell, Thore Husfeldt

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We systematically investigate the complexity of counting subgraph patterns modulo fixed integers. For example, it is known that the parity of the number of k-matchings can be determined in polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)-time algorithm to compute modulo 2t the number of subgraph occurrences of patterns that are s vertices away from being matchings. This shows that the known polynomial-time cases of subgraph detection (Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t. Complementing our algorithm, we also give a simple and self-contained proof that counting k-matchings modulo odd integers q is ModqW[1]-complete and prove that counting k-paths modulo 2 is ⊕W[1]-complete, answering an open question by Björklund, Dell, and Husfeldt (ICALP 2015).

Originalspråkengelska
Titel på värdpublikation29th Annual European Symposium on Algorithms, ESA 2021
RedaktörerPetra Mutzel, Rasmus Pagh, Grzegorz Herman
FörlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
ISBN (elektroniskt)9783959772044
DOI
StatusPublished - 2021 sep. 1
Evenemang29th Annual European Symposium on Algorithms, ESA 2021 - Vitual, Lisbon, Portugal
Varaktighet: 2021 sep. 62021 sep. 8

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
Volym204
ISSN (tryckt)1868-8969

Konferens

Konferens29th Annual European Symposium on Algorithms, ESA 2021
Land/TerritoriumPortugal
OrtVitual, Lisbon
Period2021/09/062021/09/08

Ämnesklassifikation (UKÄ)

  • Datavetenskap (Datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Modular counting of subgraphs: Matchings, matching-splittable graphs, and paths”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här