TY - JOUR
T1 - Molecular assembly in block copolymer-surfactant nanoparticle dispersions
T2 - Information on molecular exchange and apparent solubility from high-resolution and pfg nmr
AU - Ferreira, Guilherme A.
AU - Loh, Watson
AU - Topgaard, Daniel
AU - Söderman, Olle
AU - Piculell, Lennart
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - Internally structured block copolymer-surfactant particles are formed when the complex salts of ionic-neutral block copolymers neutralized by surfactant counterions are dispersed in aqueous media. Here, we report the1H NMR signal intensities and self-diffusion coefficients (D, from pulsed field gradient nuclear magnetic resonance, PFG NMR) of trimethyl alkylammonium surfac-tant ions and the poly(acrylamide)-block-poly(acrylate) (PAAm-b-PA) polyions forming such parti-cles. The results reveal the presence of an “NMR-invisible” (slowly exchanging) fraction of aggre-gated surfactant ions in the particle core and an “NMR-visible” fraction consisting of surface sur-factant ions in rapid exchange with the surfactant ions dissociated into the aqueous domain. They also confirm that the neutral PAAm blocks are exposed to water at the particle surface, while the PA blocks are buried in the particle core. The self-diffusion of the polyions closely agree with the self-diffusion of a hydrophobic probe molecule solubilized in the particles, showing that essentially all copolymer chains are incorporated in the aggregates. Through centrifugation, we prepared mac-roscopically phase-separated systems with a phase concentrated in particles separated from a clear dilute phase. D values for the surfactant and block copolymer indicated that the dilute phase con-tained small aggregates (ca. 5 nm) of surfactant ions and a few anionic-neutral block copolymer chains. Regardless of the overall concentration of the sample, the fraction of block copolymer found in the dilute phase was nearly constant. This indicates that the dilute fraction represented a tail of small particles created by the dispersion process rather than a true thermodynamic solubility of the complex salts.
AB - Internally structured block copolymer-surfactant particles are formed when the complex salts of ionic-neutral block copolymers neutralized by surfactant counterions are dispersed in aqueous media. Here, we report the1H NMR signal intensities and self-diffusion coefficients (D, from pulsed field gradient nuclear magnetic resonance, PFG NMR) of trimethyl alkylammonium surfac-tant ions and the poly(acrylamide)-block-poly(acrylate) (PAAm-b-PA) polyions forming such parti-cles. The results reveal the presence of an “NMR-invisible” (slowly exchanging) fraction of aggre-gated surfactant ions in the particle core and an “NMR-visible” fraction consisting of surface sur-factant ions in rapid exchange with the surfactant ions dissociated into the aqueous domain. They also confirm that the neutral PAAm blocks are exposed to water at the particle surface, while the PA blocks are buried in the particle core. The self-diffusion of the polyions closely agree with the self-diffusion of a hydrophobic probe molecule solubilized in the particles, showing that essentially all copolymer chains are incorporated in the aggregates. Through centrifugation, we prepared mac-roscopically phase-separated systems with a phase concentrated in particles separated from a clear dilute phase. D values for the surfactant and block copolymer indicated that the dilute phase con-tained small aggregates (ca. 5 nm) of surfactant ions and a few anionic-neutral block copolymer chains. Regardless of the overall concentration of the sample, the fraction of block copolymer found in the dilute phase was nearly constant. This indicates that the dilute fraction represented a tail of small particles created by the dispersion process rather than a true thermodynamic solubility of the complex salts.
KW - Block copolymer–surfactant complexes
KW - Diffusion NMR
KW - Molecular exchange
U2 - 10.3390/polym13193265
DO - 10.3390/polym13193265
M3 - Article
C2 - 34641081
AN - SCOPUS:85116681066
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 19
M1 - 3265
ER -