TY - JOUR
T1 - Molecular motor-driven filament transport across three-dimensional, polymeric micro-junctions
AU - Reuther, Cordula
AU - Steenhusen, Sönke
AU - Meinecke, Christoph Robert
AU - Surendiran, Pradheebha
AU - Salhotra, Aseem
AU - Lindberg, Frida W.
AU - M nsson, Alf
AU - Linke, Heiner
AU - Diez, Stefan
N1 - Publisher Copyright:
© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
PY - 2021/12
Y1 - 2021/12
N2 - Molecular motor-driven filament systems have been extensively explored for biomedical and nanotechnological applications such as lab-on-chip molecular detection or network-based biocomputation. In these applications, filament transport conventionally occurs in two dimensions (2D), often guided along open, topographically and/or chemically structured channels which are coated by molecular motors. However, at crossing points of different channels the filament direction is less well determined and, though crucial to many applications, reliable guiding across the junction can often not be guaranteed. We here present a three-dimensional (3D) approach that eliminates the possibility for filaments to take wrong turns at junctions by spatially separating the channels crossing each other. Specifically, 3D junctions with tunnels and overpasses were manufactured on glass substrates by two-photon polymerization, a 3D fabrication technology where a tightly focused, femtosecond-pulsed laser is scanned in a layer-to-layer fashion across a photo-polymerizable inorganic-organic hybrid polymer (ORMOCER®) with µm resolution. Solidification of the polymer was confined to the focal volume, enabling the manufacturing of arbitrary 3D microstructures according to computer-aided design data. Successful realization of the 3D junction design was verified by optical and electron microscopy. Most importantly, we demonstrated the reliable transport of filaments, namely microtubules propelled by kinesin-1 motors, across these 3D junctions without junction errors. Our results open up new possibilities for 3D functional elements in biomolecular transport systems, in particular their implementation in biocomputational networks.
AB - Molecular motor-driven filament systems have been extensively explored for biomedical and nanotechnological applications such as lab-on-chip molecular detection or network-based biocomputation. In these applications, filament transport conventionally occurs in two dimensions (2D), often guided along open, topographically and/or chemically structured channels which are coated by molecular motors. However, at crossing points of different channels the filament direction is less well determined and, though crucial to many applications, reliable guiding across the junction can often not be guaranteed. We here present a three-dimensional (3D) approach that eliminates the possibility for filaments to take wrong turns at junctions by spatially separating the channels crossing each other. Specifically, 3D junctions with tunnels and overpasses were manufactured on glass substrates by two-photon polymerization, a 3D fabrication technology where a tightly focused, femtosecond-pulsed laser is scanned in a layer-to-layer fashion across a photo-polymerizable inorganic-organic hybrid polymer (ORMOCER®) with µm resolution. Solidification of the polymer was confined to the focal volume, enabling the manufacturing of arbitrary 3D microstructures according to computer-aided design data. Successful realization of the 3D junction design was verified by optical and electron microscopy. Most importantly, we demonstrated the reliable transport of filaments, namely microtubules propelled by kinesin-1 motors, across these 3D junctions without junction errors. Our results open up new possibilities for 3D functional elements in biomolecular transport systems, in particular their implementation in biocomputational networks.
KW - 3D junctions
KW - biocomputation
KW - molecular motors
KW - polymeric nanostructure
U2 - 10.1088/1367-2630/ac39b4
DO - 10.1088/1367-2630/ac39b4
M3 - Article
AN - SCOPUS:85121803994
VL - 23
JO - New Journal of Physics
JF - New Journal of Physics
SN - 1367-2630
IS - 12
M1 - 125002
ER -