multiclassPairs: An R package to train multiclass pair-based classifier

Nour-Al-Dain Marzouka, Pontus Eriksson

Forskningsoutput: TidskriftsbidragDebate/Note/EditorialPeer review

Sammanfattning

Motivation
k–Top Scoring Pairs (kTSP) algorithms utilize in-sample gene expression feature pair rules for class prediction, and have demonstrated excellent performance and robustness. The available packages and tools primarily focus on binary prediction (i.e. two classes). However, many real-world classification problems e.g., tumor subtype prediction, are multiclass tasks.
Results
Here, we present multiclassPairs, an R package to train pair-based single sample classifiers for multiclass problems. multiclassPairs offers two main methods to build multiclass prediction models, either using a one-vs-rest kTSP scheme or through a novel pair-based Random Forest approach. The package also provides options for dealing with class imbalances, multiplatform training, missing features in test data, and visualization of training and test results.
Availability
‘multiclassPairs’ package is available on CRAN servers and GitHub: https://github.com/NourMarzouka/multiclassPairs
Supplementary information
Supplementary data are available at Bioinformatics online.
Originalspråkengelska
Artikelnummerbtab088
Sidor (från-till)3043-3044
TidskriftBioinformatics
Volym37
Nummer18
DOI
StatusPublished - 2021

Ämnesklassifikation (UKÄ)

  • Bioinformatik (Beräkningsbiologi)

Fingeravtryck

Utforska forskningsämnen för ”multiclassPairs: An R package to train multiclass pair-based classifier”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här