Multiplier Tests and Subhomogeneity of Multiplier Algebras

Alexandru Aleman, Michael Hartz, John E. McCarthy, Stefan Richter

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review


Multipliers of reproducing kernel Hilbert spaces can be characterized in terms of positivity of n n matrices analogous to the classical Pick matrix. We study for which reproducing kernel Hilbert spaces it suffices to consider matrices of bounded size n. We connect this problem to the notion of subhomogeneity of non-selfadjoint operator algebras. Our main results show that multiplier algebras of many Hilbert spaces of analytic functions, such as the Dirichlet space and the Drury–Arveson space, are not subhomogeneous, and hence one has to test Pick matrices of arbitrarily large matrix size n. To treat the Drury–Arveson space, we show that multiplier algebras of certain weighted Dirichlet spaces on the disc embed completely isometrically into the multiplier algebra of the Drury–Arveson space.

Sidor (från-till)719-764
Antal sidor46
TidskriftDocumenta Mathematica
StatusPublished - 2022

Ämnesklassifikation (UKÄ)

  • Geometri


Utforska forskningsämnen för ”Multiplier Tests and Subhomogeneity of Multiplier Algebras”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här