Narrow proofs may be maximally long

Albert Atserias, Massimo Lauria, Jakob Nordström

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We prove that there are 3-conjunctive normal form formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size nΩ(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size nO(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.

Originalspråkengelska
Artikelnummer19
TidskriftACM Transactions on Computational Logic
Volym17
Nummer3
DOI
StatusPublished - 2016 feb.
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”Narrow proofs may be maximally long”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här