@inproceedings{8daf018d0f7443039161dc3f137ea9b6,

title = "Narrow proofs may be spacious: Separating space and width in resolution",

abstract = "The width of a resolution proof is the maximal number of literals in any clause of the proof. The space of a proof is the maximal number of clauses kept in memory simultaneously if the proof is only allowed to infer new clauses from clauses currently in memory. Both of these measures have previously been studied and related to the resolution refutation size of unsatisfiable CNF formulas. Also, the refutation space of a formula has been proven to be at least as large as the refutation width, but it has been open whether space can be separated from width or the two measures coincide asymptotically. We prove that there is a family of k-CNF formulas for which the refutation width in resolution is constant but the refutation space is non-constant, thus solving a problem mentioned in several previous papers.",

keywords = "Lower bound, Pebble game, Pebbling contradiction, Proof complexity, Resolution, Separation, Space, Width",

author = "Jakob Nordstr{\"o}m",

year = "2006",

doi = "10.1145/1132516.1132590",

language = "English",

isbn = "1595931341",

series = "Proceedings of the Annual ACM Symposium on Theory of Computing",

publisher = "Association for Computing Machinery (ACM)",

pages = "507--516",

booktitle = "STOC'06",

address = "United States",

note = "38th Annual ACM Symposium on Theory of Computing, STOC'06 ; Conference date: 21-05-2006 Through 23-05-2006",

}