Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler - Leman Refinement Steps

Christoph Berkholz, Jakob Nordström

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least n (k= log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler-Leman algorithm imply near-optimal lower bounds on the number of refinement iterations. A key component in our proof is the hardness condensation technique recently introduced by [Razborov '16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the quantifier depth required to distinguish them.

Originalspråkengelska
Titel på värdpublikationProceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science, LICS 2016
FörlagAssociation for Computing Machinery (ACM)
Sidor267-276
Antal sidor10
ISBN (elektroniskt)9781450343916
DOI
StatusPublished - 2016 juli 5
Externt publiceradJa
Evenemang31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016 - New York, USA
Varaktighet: 2016 juli 52016 juli 8

Publikationsserier

NamnProceedings - Symposium on Logic in Computer Science
Volym05-08-July-2016
ISSN (tryckt)1043-6871

Konferens

Konferens31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016
Land/TerritoriumUSA
OrtNew York
Period2016/07/052016/07/08

Ämnesklassifikation (UKÄ)

  • Algebra och logik
  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler - Leman Refinement Steps”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här