Neutron imaging and digital volume correlation to analyse the coupled hydro-mechanics of geomaterials

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

A new approach to characterise the evolution and coupling of deformation and fluid flow in geomaterials is presented. The method exploits some key features of neutrons, namely penetration of dense materials used for triaxial pressure cells, sensitivity to hydrogen and the possibility to distinguish hydrogen from its isotope deuterium (in normal water, H2O, and heavy water, D2O, respectively). Illustration of the approach is provided with results from a combined fluid flow/triaxial compression test on a cemented sand specimen performed in-situ (i.e., acquiring images during loading) at a neutron imaging station. Quantitative analysis of neutron tomography images acquired at different stages of deformation is made by Digital Volume Correlation to provide full 3D strain fields that highlight the evolution of localised deformation features. Spatio-temporal tracking of the effect of the evolution of the permeability in the sample was possible by neutron radiographies acquired during pressure driven flow of H2O into the sample saturated with D2O. By exploiting the H2O/D2O neutron transmission contrast and similarities of their flow behaviour, the tracking of the H2O/D2O front can be considered as an indicator of the permeability of the sample that is correlated to the measured evolution of the deformation.

Originalspråkengelska
Sidor (från-till)60-68
Antal sidor9
TidskriftRivista Italiana di Geotecnica
Volym51
Nummer4
DOI
StatusPublished - 2017

Ämnesklassifikation (UKÄ)

  • Geoteknik
  • Strömningsmekanik och akustik

Fingeravtryck

Utforska forskningsämnen för ”Neutron imaging and digital volume correlation to analyse the coupled hydro-mechanics of geomaterials”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här