Non-Coherent Sensor Fusion via Entropy Regularized Optimal Mass Transport

Filip Elvander, Isabel Haasler, Andreas Jakobsson, Johan Karlsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This work presents a method for information fusion in source localization applications. The method utilizes the concept of optimal mass transport in order to construct estimates of the spatial spectrum using a convex barycenter formulation. We introduce an entropy regularization term to the convex objective, which allows for low-complexity iterations of the solu- tion algorithm and thus makes the proposed method applicable also to higher-dimensional problems. We illustrate the proposed method’s inherent robustness to misalignment and miscalibration of the sensor arrays using numerical examples of localization in two dimensions.
Originalspråkengelska
Titel på värdpublikationAcoustics, Speech and Signal Processing (ICASSP), 2019 IEEE International Conference on
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor4415-4419
Antal sidor5
ISBN (elektroniskt)978-1-4799-8131-1
DOI
StatusPublished - 2019
EvenemangIEEE International Conference on Acoustics, Speech, and Signal Processing 2019 - Brighton, Storbritannien
Varaktighet: 2019 maj 132019 maj 17
Konferensnummer: 44

Konferens

KonferensIEEE International Conference on Acoustics, Speech, and Signal Processing 2019
Förkortad titelICASSP 2019
Land/TerritoriumStorbritannien
OrtBrighton
Period2019/05/132019/05/17

Ämnesklassifikation (UKÄ)

  • Signalbehandling
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Non-Coherent Sensor Fusion via Entropy Regularized Optimal Mass Transport”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här