Non-Invasive Characterization of Atrio-Ventricular Properties during Atrial Fibrillation

Mattias Karlsson, Mikael Wallman, Sara R. Ulimoen, Frida Sandberg

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The atrio-ventricular (AV) node is the primary regulator of ventricular rhythm during atrial fibrillation (AF). Hence, ECG based characterization of AV node properties can be an important tool for monitoring and predicting the effect of rate control drugs. In this work we present a network model of the AV node, and an associated workflow for robust estimation of the model parameters from ECG. The model consists of interacting nodes with refractory periods and conduction delays determined by the stimulation history of each node. The nodes are organized in one fast pathway (FP) and one slow pathway (SP), interconnected at their last nodes. Model parameters are estimated using a genetic algorithm with a fitness function based on the Poincare plot of the RR interval series. The robustness of the parameter estimates was evaluated using simulated data based on ECG measurements. Results from this show that refractory period parameters R{min}{SP} and Delta R{SP} can be estimated with an error (meanpm std) of 10pm 22 ms and-12.6pm 26 ms respectively, and conduction delay parameters D{min,tot}{SP} and Delta D{tot}{SP} with an error of 7pm 35 ms and 4pm 36 ms. Corresponding results for the fast pathway are 31.7pm 65 ms, -0.3pm 77 ms, and 1 7pm 29 ms,43pm 109 ms. This suggest that AV node properties can be assessed from ECG during AF with enough precision and robustness for monitoring the effect of rate control drugs.

Originalspråkengelska
Titel på värdpublikation2021 Computing in Cardiology, CinC 2021
FörlagIEEE Computer Society
ISBN (elektroniskt)9781665479165
DOI
StatusPublished - 2021
Evenemang2021 Computing in Cardiology, CinC 2021 - Brno, Tjeckien
Varaktighet: 2021 sep. 132021 sep. 15

Publikationsserier

NamnComputing in Cardiology
Volym2021-September
ISSN (tryckt)2325-8861
ISSN (elektroniskt)2325-887X

Konferens

Konferens2021 Computing in Cardiology, CinC 2021
Land/TerritoriumTjeckien
OrtBrno
Period2021/09/132021/09/15

Bibliografisk information

Publisher Copyright:
© 2021 Creative Commons.

Ämnesklassifikation (UKÄ)

  • Medicinsk bioteknologi

Fingeravtryck

Utforska forskningsämnen för ”Non-Invasive Characterization of Atrio-Ventricular Properties during Atrial Fibrillation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här