TY - JOUR
T1 - Noninvasive Assessment of Left Ventricular Pressure-Volume Relations
T2 - Inter- and Intraobserver Variability and Assessment Across Heart Failure Subtypes
AU - Edlund, Jonathan
AU - Arvidsson, Per M
AU - Nelsson, Anders
AU - Smith, J Gustav
AU - Magnusson, Martin
AU - Heiberg, Einar
AU - Steding-Ehrenborg, Katarina
AU - Arheden, Håkan
PY - 2022/12/1
Y1 - 2022/12/1
N2 - A novel method to derive pressure-volume (PV) loops noninvasively from cardiac magnetic resonance images has recently been developed. The aim of this study was to evaluate inter- and intraobserver variability of hemodynamic parameters obtained from noninvasive PV loops in healthy controls, subclinical diastolic dysfunction (SDD), and patients with heart failure with preserved ejection fraction, mildly reduced ejection fraction, and reduced ejection fraction. We included 75 subjects, of whom 15 were healthy controls, 15 subjects with SDD (defined as fulfilling 1 to 2 echocardiographic criteria for diastolic dysfunction), and 15 patients with preserved ejection fraction, 15 with mildly reduced ejection fraction, and 15 with reduced ejection fraction. PV loops were computed using time-resolved left ventricular volumes from cardiac magnetic resonance images and a brachial blood pressure. Inter- and intraobserver variability and intergroup differences of PV loop-derived hemodynamic parameters were assessed. Bias was low and limits of agreement were narrow for all hemodynamic parameters in the inter- and intraobserver comparisons. Interobserver difference for stroke work was 2 ± 9%, potential energy was 4 ± 11%, and maximal ventricular elastance was -4 ± 7%. Intraobserver for stroke work was -1 ± 7%, potential energy was 3 ± 4%, and maximal ventricular elastance was 1 ± 5%. In conclusion, this study presents a fully noninvasive left ventricular PV loop analysis across healthy controls, subjects with SDD, and patients with heart failure with preserved or impaired systolic function. In conclusion, the method for PV loop computation from clinical-standard manual left ventricular segmentation was rapid and robust, bridging the gap between clinical and research settings.
AB - A novel method to derive pressure-volume (PV) loops noninvasively from cardiac magnetic resonance images has recently been developed. The aim of this study was to evaluate inter- and intraobserver variability of hemodynamic parameters obtained from noninvasive PV loops in healthy controls, subclinical diastolic dysfunction (SDD), and patients with heart failure with preserved ejection fraction, mildly reduced ejection fraction, and reduced ejection fraction. We included 75 subjects, of whom 15 were healthy controls, 15 subjects with SDD (defined as fulfilling 1 to 2 echocardiographic criteria for diastolic dysfunction), and 15 patients with preserved ejection fraction, 15 with mildly reduced ejection fraction, and 15 with reduced ejection fraction. PV loops were computed using time-resolved left ventricular volumes from cardiac magnetic resonance images and a brachial blood pressure. Inter- and intraobserver variability and intergroup differences of PV loop-derived hemodynamic parameters were assessed. Bias was low and limits of agreement were narrow for all hemodynamic parameters in the inter- and intraobserver comparisons. Interobserver difference for stroke work was 2 ± 9%, potential energy was 4 ± 11%, and maximal ventricular elastance was -4 ± 7%. Intraobserver for stroke work was -1 ± 7%, potential energy was 3 ± 4%, and maximal ventricular elastance was 1 ± 5%. In conclusion, this study presents a fully noninvasive left ventricular PV loop analysis across healthy controls, subjects with SDD, and patients with heart failure with preserved or impaired systolic function. In conclusion, the method for PV loop computation from clinical-standard manual left ventricular segmentation was rapid and robust, bridging the gap between clinical and research settings.
U2 - 10.1016/j.amjcard.2022.09.001
DO - 10.1016/j.amjcard.2022.09.001
M3 - Article
C2 - 36192197
SN - 1879-1913
VL - 184
SP - 48
EP - 55
JO - American Journal of Cardiology
JF - American Journal of Cardiology
ER -