Nonlinear approximation of functions in two dimensions by sums of wave packets

Fredrik Andersson, Marcus Carlsson, Maarten V. de Hoop

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We consider the problem of approximating functions that arise in wave-equation imaging by sums of wave packets. Our objective is to find sparse decompositions of image functions, over a finite range of scales. We also address the naturally connected task of numerically approximating the wavefront set. We present an approximation where we use the dyadic parabolic decomposition, but the approach is not limited to only this type. The approach makes use of expansions in terms of exponentials, while developing an algebraic structure associated with the decomposition of functions into wave packets. (c) 2009 Elsevier Inc. All rights reserved.
Originalspråkengelska
Sidor (från-till)198-213
TidskriftApplied and Computational Harmonic Analysis
Volym29
Nummer2
DOI
StatusPublished - 2010

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Nonlinear approximation of functions in two dimensions by sums of wave packets”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här