On cost design in applications of optimal control

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

25 Nedladdningar (Pure)


A new approach to feedback control design based on optimal control is proposed. Instead of expensive computations of the value function for different penalties on the states and inputs, we use a control Lyapunov function that amounts to be a value function of the optimal control problem with suitable cost design and then study combinations of input and state penalty that are compatible with this value function. This drastically simplifies the role of the Hamilton-Jacobi-Bellman equation, since it is no longer a partial differential equation to be solved, but an algebraic relationship between different terms of the cost. The paper illustrates this idea in different examples, including H_\infty control and optimal control of coupled oscillators.
Sidor (från-till)452 - 457
Antal sidor6
TidskriftIEEE Control Systems Letters
Tidigt onlinedatum2021 maj 12
StatusPublished - 2021

Ämnesklassifikation (UKÄ)

  • Reglerteknik


Utforska forskningsämnen för ”On cost design in applications of optimal control”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här