On laplace–carleson embeddings, and lp-mapping properties of the fourier transform

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We investigate so-called Laplace–Carleson embeddings for large exponents. In particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related results for Sobolev-and Besov spaces, and mapping properties of the Fourier transform. These variants of the Hausdorff–Young theorem appear difficult to find in the literature. We conclude the paper with an example related to an open problem.

Originalspråkengelska
Sidor (från-till)437-457
Antal sidor21
TidskriftArkiv för matematik
Volym58
Utgåva2
DOI
StatusPublished - 2020

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”On laplace–carleson embeddings, and l<sup>p</sup>-mapping properties of the fourier transform”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här