On Robustness of the Generalized Proportional Controller for Traffic Signal Control

Gustav Nilsson, Giacomo Como

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingForskningPeer review

Sammanfattning

We investigate robustness properties of the Generalized Proportional Allocation (GPA) policy that has been recently proposed for traffic signal control in urban networks. The GPA policy is fully decentralized, relies only on local information on the current congestion state, and requires no knowledge of the routing, the exogenous inflows, or the network structure. In previous work, we proved throughput optimality of the GPA policy, by showing that it is able to stabilize the traffic network dynamics whenever any controller is able to do so. In this paper, we first extend these results by showing that even when the measurements have offsets, the GPA policy maintains the same stability properties as with exact measurements. A comparison between the GPA and the MaxPressure traffic signal controllers with respect to robustness is also performed in a microscopic traffic simulator, where it is shown that while the GPA can handle offsets in the measurements, the MaxPressure controller may make vehicles wait forever.

Originalspråkengelska
Titel på gästpublikation2020 American Control Conference, ACC 2020
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1191-1196
Antal sidor6
ISBN (elektroniskt)9781538682661
DOI
StatusPublished - 2020 jul
Externt publiceradJa
Evenemang2020 American Control Conference, ACC 2020 - Denver, USA
Varaktighet: 2020 jul 12020 jul 3

Publikationsserier

NamnProceedings of the American Control Conference
Volym2020-July
ISSN (tryckt)0743-1619

Konferens

Konferens2020 American Control Conference, ACC 2020
Land/TerritoriumUSA
OrtDenver
Period2020/07/012020/07/03

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”On Robustness of the Generalized Proportional Controller for Traffic Signal Control”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här