On some Nonlinear Aspects of Wave Motion

Forskningsoutput: AvhandlingLicentiatavhandling

Sammanfattning

In the first part of this thesis we consider the governing equations for capillary water waves given by the Euler equations with a free surface under the influence of surface tension over a flat bottom. We look for two-dimensional steady periodic waves. The problem is first transformed to a nonlinear elliptic equation in a rectangle. Using bifurcation and degree theory we then prove the existence of a global continuum of such waves.

In the second part of the thesis we inverstigate an equation which is a model for shallow water waves and waves in a circular cylindrical rod of a compressible hyperelastic material. We present sufficient conditions for global existence and blow-up.
Originalspråkengelska
KvalifikationLicentiat
Tilldelande institution
  • Matematik (naturvetenskapliga fakulteten)
Handledare
  • Constantin, Adrian, handledare
StatusPublished - 2005

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”On some Nonlinear Aspects of Wave Motion”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här