On the Asymptotics of Solving the LWE Problem Using Coded-BKW with Sieving

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The Learning with Errors problem (LWE) has become a central topic in recent cryptographic research. In this paper, we present a new solving algorithm combining important ideas from previous work on improving the Blum-Kalai-Wasserman (BKW) algorithm and ideas from sieving in lattices. The new algorithm is analyzed and demonstrates an improved asymptotic performance. For the Regev parameters $q=n^2$ and noise level $\sigma = n^{1.5}/(\sqrt{2\pi}\log_{2}^{2}n)$, the asymptotic complexity is $2^{0.893n}$ in the standard setting, improving on the previously best known complexity of roughly $2^{0.930n}$. The newly proposed algorithm also provides asymptotic improvements when a quantum computer is assumed or when the number of samples is limited.
Originalspråkengelska
Sidor (från-till)5243-5259
Antal sidor16
TidskriftIEEE Transactions on Information Theory
Volym65
Nummer8
DOI
StatusPublished - 2019 aug.

Ämnesklassifikation (UKÄ)

  • Signalbehandling

Fingeravtryck

Utforska forskningsämnen för ”On the Asymptotics of Solving the LWE Problem Using Coded-BKW with Sieving”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här