Sammanfattning
The local well-posedness of a generalized Camassa-Holm equation is established by means of Kato's theory for quasilinear evolution equations and two types of results for the blow-up of solutions with smooth initial data are given.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 1382-1399 |
Tidskrift | Nonlinear Analysis: Theory, Methods & Applications |
Volym | 64 |
Nummer | 6 |
DOI | |
Status | Published - 2006 |
Ämnesklassifikation (UKÄ)
- Matematik