On the exact and approximate distributions of the product of a Wishart matrix with a normal vector

Taras Bodnar, Stepan Mazur, Yarema Okhrin

Forskningsoutput: Bidrag till övrig tidskrift/dags- eller nyhetstidningArtikel i facktidskrift eller populärpressPopulärvetenskap

Sammanfattning

In this paper we consider the distribution of the product of a Wishart random matrix and a Gaussian random vector. We derive a stochastic representation for the elements of the product. Using this result, the exact joint density for an arbitrary linear combination of the elements of the product is obtained. Furthermore, the derived stochastic representation allows us to simulate samples of arbitrary size by generating independently distributed chi-squared random variables and standard multivariate normal random vectors for each element of the sample. Additionally to the Monte Carlo approach, we suggest another approximation of the density function, which is based on the Gaussian integral and the third order Taylor expansion. We investigate, with a numerical study, the properties of the suggested approximations. A good performance is documented for both methods.
Originalspråkengelska
Sidor70-81
Volym122
SpecialistpublikationJournal of Multivariate Analysis
FörlagElsevier
DOI
StatusPublished - 2013
Externt publiceradJa

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”On the exact and approximate distributions of the product of a Wishart matrix with a normal vector”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här