On the Gilbert-Varshamov distance of abelian group codes

Giacomo Como, Fabio Fagnani

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The problem of the minimum Bhattacharyya distance of group codes over symmetric channels is addressed. Ensembles of ℤm-linear codes are introduced and their typical minimum distance characterized in terms of the Gilbert-Varshamov distances associated to the subgroups of ℤm. For the AWGN channel with 8-PSK as input it is shown that the typical ℤ8 -linear code achieves the Gilbert-Varshamov bound.

Originalspråkengelska
Titel på värdpublikationProceedings - 2007 IEEE International Symposium on Information Theory, ISIT 2007
Sidor2651-2655
Antal sidor5
DOI
StatusPublished - 2007 dec. 1
Evenemang2007 IEEE International Symposium on Information Theory, ISIT 2007 - Nice, Frankrike
Varaktighet: 2007 juni 242007 juni 29

Konferens

Konferens2007 IEEE International Symposium on Information Theory, ISIT 2007
Land/TerritoriumFrankrike
OrtNice
Period2007/06/242007/06/29

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”On the Gilbert-Varshamov distance of abelian group codes”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här