On the Laplace operator with a weak magnetic field in exterior domains

Ayman Kachmar, Vladimir Lotoreichik, Mikael Sundqvist

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We study the magnetic Laplacian in a two-dimensional exterior domain with Neumann boundary condition and uniform magnetic field. For the exterior of the disk we establish accurate asymptotics of the low-lying eigenvalues in the weak magnetic field limit. For the exterior of a star-shaped domain, we obtain an asymptotic upper bound on the lowest eigenvalue in the weak field limit, involving the 4-moment, and optimal for the case of the disk. Moreover, we prove that, for moderate magnetic fields, the exterior of the disk is a local maximizer for the lowest eigenvalue under a p-moment constraint.

Originalspråkengelska
Artikelnummer5
TidskriftAnalysis and Mathematical Physics
Volym15
Nummer1
DOI
StatusPublished - 2025 feb.

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”On the Laplace operator with a weak magnetic field in exterior domains”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här