Online Group-Sparse Regression Using the Covariance Fitting Criterion

Ted Kronvall, Stefan Ingi Adalbjörnsson, Santhosh Nadig, Andreas Jakobsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

133 Nedladdningar (Pure)

Sammanfattning

In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved byr eformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.
Originalspråkengelska
Titel på värdpublikationProceedings of the 25th European Signal Processing Conference (EUSIPCO)
FörlagEURASIP
Antal sidor5
VolymCFP1740S-USB
ISBN (elektroniskt)978-0-9928626-8-8
StatusPublished - 2017

Publikationsserier

NamnEuropean Signal Processing Conference (EUSIPCO)
FörlagEURASIP
ISSN (elektroniskt)2076-1465

Bibliografisk information

I

Ämnesklassifikation (UKÄ)

  • Signalbehandling
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Online Group-Sparse Regression Using the Covariance Fitting Criterion”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här