TY - JOUR
T1 - Optimizing the mapping of finger areas in primary somatosensory cortex using functional MRI.
AU - Weibull, Andreas
AU - Björkman, Anders
AU - Hall, Henrik
AU - Rosén, Birgitta
AU - Lundborg, Göran
AU - Svensson, Jonas
N1 - The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Hand Surgery Research Group (013241910), Reconstructive Surgery (013240300), Medical Radiation Physics, Malmö (013243210)
PY - 2008
Y1 - 2008
N2 - Functional magnetic resonance imaging mapping of the finger somatotopy in the primary somatosensory cortex requires a reproducible and precise stimulation. The highly detailed functional architecture in this region of the brain also requires careful consideration in choice of spatial resolution and postprocessing parameters. The purpose of this study is therefore to investigate the impact of spatial resolution and level of smoothing during tactile stimulation using a precise stimuli system. Twenty-one volunteers were scanned using 2(3) mm(3) and 3(3) mm(3) voxel volume and subsequently evaluated using three different smoothing kernel widths. The overall activation reproducibility was also evaluated. Using a high spatial resolution proved advantageous for all fingers. At 2(3) mm(3) voxel volume, activation of the thumb, middle finger and little finger areas was seen in 89%, 67% and 50% of the volunteers, compared to 78%, 61% and 33% at 3(3) mm(3), respectively. The sensitivity was comparable for nonsmoothed and slightly smoothed (4 mm kernel width) data; however, increasing the smoothing kernel width from 4 to 8 mm resulted in a critical decrease ( approximately 50%) in sensitivity. In repeated measurements of the same subject at six different days, the localization reproducibility of all fingers was within 4 mm (1 S.D. of the mean). The precise computer-controlled stimulus, together with data acquisition at high spatial resolution and with only minor smoothing during evaluation, could be a very useful strategy in studies of brain plasticity and rehabilitation strategies in hand and finger disorders and injuries.
AB - Functional magnetic resonance imaging mapping of the finger somatotopy in the primary somatosensory cortex requires a reproducible and precise stimulation. The highly detailed functional architecture in this region of the brain also requires careful consideration in choice of spatial resolution and postprocessing parameters. The purpose of this study is therefore to investigate the impact of spatial resolution and level of smoothing during tactile stimulation using a precise stimuli system. Twenty-one volunteers were scanned using 2(3) mm(3) and 3(3) mm(3) voxel volume and subsequently evaluated using three different smoothing kernel widths. The overall activation reproducibility was also evaluated. Using a high spatial resolution proved advantageous for all fingers. At 2(3) mm(3) voxel volume, activation of the thumb, middle finger and little finger areas was seen in 89%, 67% and 50% of the volunteers, compared to 78%, 61% and 33% at 3(3) mm(3), respectively. The sensitivity was comparable for nonsmoothed and slightly smoothed (4 mm kernel width) data; however, increasing the smoothing kernel width from 4 to 8 mm resulted in a critical decrease ( approximately 50%) in sensitivity. In repeated measurements of the same subject at six different days, the localization reproducibility of all fingers was within 4 mm (1 S.D. of the mean). The precise computer-controlled stimulus, together with data acquisition at high spatial resolution and with only minor smoothing during evaluation, could be a very useful strategy in studies of brain plasticity and rehabilitation strategies in hand and finger disorders and injuries.
U2 - 10.1016/j.mri.2008.04.007
DO - 10.1016/j.mri.2008.04.007
M3 - Article
C2 - 18550314
SN - 0730-725X
VL - Jun 10
SP - 1342
EP - 1351
JO - Magnetic Resonance Imaging
JF - Magnetic Resonance Imaging
ER -