Order of magnitude bounds for expectations of A2-functions of generalized random bilinear forms

Michael J Klass, Krzysztof Nowicki

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Let Φ be a symmetric function, nondecreasing on [0,∞) and satisfying a Δ2 growth condition, (X 1,Y 1), (X 2,Y 2),…,(X n ,Y n ) be arbitrary independent random vectors such that for any given i either Y i =X i or Y i is independent of all the other variates. The purpose of this paper is to develop an approximation of valid for any constants {a ij }1≤ i,j≤n , {b i } i =1 n , {c j } j =1 n and d. Our approach relies primarily on a chain of successive extensions of Khintchin's inequality for decoupled random variables and the result of Klass and Nowicki (1997) for non-negative bilinear forms of non-negative random variables. The decoupling is achieved by a slight modification of a theorem of de la Peña and Montgomery–Smith (1995).
Originalspråkengelska
Sidor (från-till)457-492
TidskriftProbability Theory and Related Fields
Volym112
Nummer4
StatusPublished - 1998

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Order of magnitude bounds for expectations of A2-functions of generalized random bilinear forms”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här