Oxidation of marine oils during in vitro gastrointestinal digestion with human digestive fluids - Role of oil origin, added tocopherols and lipolytic activity

Cecilia Tullberg, Gerd Vegarud, Ingrid Undeland

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), and 4-oxo-2-nonenal (ONE) in cod liver-, anchovy-, krill-, and algae oil during in vitro digestion with human gastrointestinal fluids was investigated. Adding rabbit gastric lipase, lipase inhibitor (orlistat) and tocopherols to cod liver oil, lipolysis and oxidation was also studied. Among the marine oils, the highest aldehyde levels (18 µM MDA, 3 µM HHE and 0.2 µM HNE) were detected after digestion of cod liver oil, while the lowest levels were detected in krill and algae oils. Addition of rabbit gastric lipase significantly increased the release of HNE during the digestion. Orlistat significantly reduced lipolysis and MDA formation. Formation of MDA and HHE was delayed by tocopherols, the tocopherol mix Covi-ox® T 70 EU being more effective than pure α-tocopherol.

Originalspråkengelska
Sidor (från-till)527-537
Antal sidor11
TidskriftFood Chemistry
Volym270
DOI
StatusPublished - 2019 jan. 1
Externt publiceradJa

Bibliografisk information

Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

Fingeravtryck

Utforska forskningsämnen för ”Oxidation of marine oils during in vitro gastrointestinal digestion with human digestive fluids - Role of oil origin, added tocopherols and lipolytic activity”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här