Parameter Identification For Inter Turn Fault Detection In Permanent-Magnet Synchronous Motors Using Stator Flux Linkage DC Offset Monitoring

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The parameters of PMSM with inter-turn fault are identified using a time-stepping finite element method (FEM). Analytical expressions (AE) uses the estimated parameters for fault analysis similar to FEM analysis. The fault waveforms, terminal voltages, obtained from the AE models are used for inter turn fault (ITF) detection, using Stator Flux Linkage DC offset (SFDO). A comparison is made between the SFDOs obtained using AE with two sets of parameters and experimental results under different fault severity. The difference in parameter selection depends on the fault severity in induced voltage waveform and in all three phases, which makes AE-based fault modeling and its detection more accurate compared to the case where only the no load waveform is used for all three phases.

Originalspråkengelska
Titel på värdpublikationProceedings of the 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2023
RedaktörerLuca Zarri, Sang Bin Lee
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor498-504
Antal sidor7
ISBN (elektroniskt)9798350320770
DOI
StatusPublished - 2023
Evenemang14th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2023 - Chania, Grekland
Varaktighet: 2023 aug. 282023 aug. 31

Konferens

Konferens14th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2023
Land/TerritoriumGrekland
OrtChania
Period2023/08/282023/08/31

Ämnesklassifikation (UKÄ)

  • Annan elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Parameter Identification For Inter Turn Fault Detection In Permanent-Magnet Synchronous Motors Using Stator Flux Linkage DC Offset Monitoring”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här