Partially exchangeable networks and architectures for learning summary statistics in approximate Bayesian computation

Samuel Wiqvist, Pierre Alexandre Mattei, Umberto Picchini, Jes Frellsen

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We present a novel family of deep neural architectures, named partially exchangeable networks (PENs) that leverage probabilistic symmetries. By design, PENs are invariant to block-switch transformations, which characterize the partial exchangeability properties of conditionally Markovian processes. Moreover, we show that any block-switch invariant function has a PEN-like representation. The DeepSets architecture is a special case of PEN and we can therefore also target fully exchangeable data. We employ PENs to learn summary statistics in approximate Bayesian computation (ABC). When comparing PENs to previous deep learning methods for learning summary statistics, our results are highly competitive, both considering time series and static models. Indeed, PENs provide more reliable posterior samples even when using less training data.

Originalspråkengelska
Titel på värdpublikation36th International Conference on Machine Learning, ICML 2019
FörlagInternational Machine Learning Society (IMLS)
Sidor11795-11804
Antal sidor10
ISBN (elektroniskt)9781510886988
StatusPublished - 2019
Evenemang36th International Conference on Machine Learning, ICML 2019 - Long Beach, USA
Varaktighet: 2019 juni 92019 juni 15

Publikationsserier

Namn36th International Conference on Machine Learning, ICML 2019
Volym2019-June

Konferens

Konferens36th International Conference on Machine Learning, ICML 2019
Land/TerritoriumUSA
OrtLong Beach
Period2019/06/092019/06/15

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Partially exchangeable networks and architectures for learning summary statistics in approximate Bayesian computation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här