Polynomial-time algorithms for the ordered maximum agreement subtree problem

Anders Dessmark, Jesper Jansson, Andrzej Lingas, Eva-Marta Lundell

    Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

    Sammanfattning

    For a set of rooted, unordered, distinctly leaf-labeled trees, the NP-hard maximum agreement subtree problem (MAST) asks for a tree contained (up to isomorphism. or homeomorphism) in all of the input trees with as many labeled leaves as possible. We study the ordered variants of MAST where the trees are uniformly or non-uniformly ordered. We provide the first known polynomial-time algorithms for the uniformly and non-uniformly ordered homeomorphic variants as well as the uniformly and non-uniformly ordered isomorphic variants of MAST. Our algorithms run in time O(kn(3)), O(n(3) min{nk, n + log (k-->1) n}), O(kn(3)), and O((k + n)n(3)), respectively, where n is the number of leaf labels and k is the number of input trees.
    Originalspråkengelska
    Titel på värdpublikationCombinatorial pattern matching / Lecture notes in computer science
    FörlagSpringer
    Sidor220-229
    Volym3109
    ISBN (tryckt)3-540-22341-X
    DOI
    StatusPublished - 2004
    Evenemang15th Annual Symposium, CPM 2004 - Istanbul, Turkiet
    Varaktighet: 2004 juli 52004 juli 7

    Publikationsserier

    Namn
    Volym3109
    ISSN (tryckt)1611-3349
    ISSN (elektroniskt)0302-9743

    Konferens

    Konferens15th Annual Symposium, CPM 2004
    Land/TerritoriumTurkiet
    OrtIstanbul
    Period2004/07/052004/07/07

    Ämnesklassifikation (UKÄ)

    • Datavetenskap (Datalogi)

    Fingeravtryck

    Utforska forskningsämnen för ”Polynomial-time algorithms for the ordered maximum agreement subtree problem”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här