Pre-ictal epileptic seizure prediction based on ECG signal analysis

Arijit Ghosh, Anasua Sarkar, Tarak Das, Piyali Basak

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Epileptic seizures demonstrate a clear effect of the dominating behavior of the autonomic nervous system on the cardiovascular system, especially on the Heart Rate Variation. Recording of Electroencephalogram (EEG) for detection of the onset of epileptic seizure had been used for constructing automatic seizure detection algorithm. Electrocardiogram (ECG) also can be used to evaluate Heart Rate Variability in patients with epileptic seizures. This paper studies 5 minutes pre-ictal ECG signal acquired from subjects suffering from Frontal Lobe Epilepsy with demonstrated seizures, whose age ranges from 18-28. ECG is acquired for both normal and epileptic subjects with demonstrated seizures. After detection of QRS complex using modified Pan-Tompkins algorithm, we perform three analysis methods to evaluate the features that uniquely help to predict an epileptic seizure. Time domain, Frequency domain and Non linear features provide accurate results in this prediction. The process can be used for implementing an automated prediction of pre-ictal (before seizure) period for seizure using only ECG signal.

Originalspråkengelska
Titel på värdpublikation2017 2nd International Conference for Convergence in Technology, I2CT 2017
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor920-925
Antal sidor6
Volym2017-January
ISBN (elektroniskt)9781509043071
DOI
StatusPublished - 2017 dec. 18
Externt publiceradJa
Evenemang2nd International Conference for Convergence in Technology, I2CT 2017 - Pune, Indien
Varaktighet: 2017 apr. 72017 apr. 9

Konferens

Konferens2nd International Conference for Convergence in Technology, I2CT 2017
Land/TerritoriumIndien
OrtPune
Period2017/04/072017/04/09

Fingeravtryck

Utforska forskningsämnen för ”Pre-ictal epileptic seizure prediction based on ECG signal analysis”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här