Predicting System loads with Artificial Neural Networks: Method and Result from "the Great Energy Predictor Shootout"

Mattias Ohlsson, Carsten Peterson, Hong Pi, Thorsteinn Rögnvaldsson, Bo Söderberg

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding


We devise a feed-forward Artificial Neural Network (ANN) procedure for
predicting utility loads and present the resulting predictions for two
test problems given by ``The Great Energy Predictor Shootout - The First
Building Data Analysis and Prediction Competition''. Key ingredients in
our approach are a method ($\delta$ -test) for determining
relevant inputs and the Multilayer Perceptron. These methods are briefly
reviewed together with comments on alternative schemes like fitting to
polynomials and the use of recurrent networks.
Titel på värdpublikation1994 Annual Proceedings of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
Antal sidor12
StatusPublished - 1994

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Citera det här