TY - JOUR
T1 - Predictive information and maintenance optimization based on decision theory
T2 - a case study considering a welded joint in an offshore wind turbine support structure
AU - Farhan, Muhammad
AU - Schneider, Ronald
AU - Thöns, Sebastian
PY - 2022
Y1 - 2022
N2 - Predictive information and maintenance optimization for deteriorating structures is concerned with scheduling (a) the collection of information by inspection and monitoring and (b) maintenance actions such as repair, replacement, and retrofitting based on updated predictions of the future condition of the structural system. In this article, we consider the problem of jointly identifying—at the beginning of the service life—the optimal inspection time and repair strategy for a generic welded joint in a generic offshore wind turbine structure subject to fatigue. The optimization is performed based on different types of decision analyses including value of information analyses to quantify the expected service life cost encompassing inspection, repair, and fatigue damage for all relevant combinations of inspection time, repair method, and repair time. Based on the analysis of the expected service life cost, the optimal inspection time, repair method, and repair time are identified. Possible repair methods for a welded joint in an offshore environment include welding and grinding, for which detailed models are formulated and utilized to update the joint’s fatigue performance. The decision analyses reveal that an inspection should be scheduled approximately at mid-service life of the welded joint. A repair should be performed in the same year after an indication and measurement of a fatigue crack given an optimal inspection scheduling. This article concludes with a discussion on the results obtained from the decision and value of information analyses.
AB - Predictive information and maintenance optimization for deteriorating structures is concerned with scheduling (a) the collection of information by inspection and monitoring and (b) maintenance actions such as repair, replacement, and retrofitting based on updated predictions of the future condition of the structural system. In this article, we consider the problem of jointly identifying—at the beginning of the service life—the optimal inspection time and repair strategy for a generic welded joint in a generic offshore wind turbine structure subject to fatigue. The optimization is performed based on different types of decision analyses including value of information analyses to quantify the expected service life cost encompassing inspection, repair, and fatigue damage for all relevant combinations of inspection time, repair method, and repair time. Based on the analysis of the expected service life cost, the optimal inspection time, repair method, and repair time are identified. Possible repair methods for a welded joint in an offshore environment include welding and grinding, for which detailed models are formulated and utilized to update the joint’s fatigue performance. The decision analyses reveal that an inspection should be scheduled approximately at mid-service life of the welded joint. A repair should be performed in the same year after an indication and measurement of a fatigue crack given an optimal inspection scheduling. This article concludes with a discussion on the results obtained from the decision and value of information analyses.
KW - decision theory
KW - fatigue
KW - fracture mechanics
KW - Integrity management
KW - predictive maintenance
KW - reliability
KW - value of information
KW - wind turbine support structure
U2 - 10.1177/1475921720981833
DO - 10.1177/1475921720981833
M3 - Article
AN - SCOPUS:85100582830
VL - 21
SP - 185
EP - 207
JO - Structural Health Monitoring
JF - Structural Health Monitoring
SN - 1475-9217
IS - 1
ER -