Probing stability of the modular thermostable xylanase Xyn10A,

Maher Abou-Hachem, Fredrik Olsson, Eva Nordberg Karlsson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.
Originalspråkengelska
Sidor (från-till)483-491
TidskriftExtremophiles
Volym7
Nummer6
DOI
StatusPublished - 2003

Ämnesklassifikation (UKÄ)

  • Industriell bioteknik

Fingeravtryck

Utforska forskningsämnen för ”Probing stability of the modular thermostable xylanase Xyn10A,”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här