Sammanfattning
A maximal symmetry group is a group of isomorphisms of a three-dimensional hyperbolic manifold of maximal order in relation to the volume of the manifold. In this paper we determine all maximal symmetry groups of the types PSL(2, q) and PGL(2, q). Depending on the prime p there are one or two such groups with q=pk and k always equals 1, 2 or 4.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 83-96 |
Tidskrift | Glasgow Mathematical Journal |
Volym | 50 |
Nummer | 1 |
DOI | |
Status | Published - 2008 |
Ämnesklassifikation (UKÄ)
- Matematik