Quality evaluation of wavelet functions for myopulse suppression in electrocardiogram

Avik Bhattacharya, Anasua Sarkar, Piyali Basak

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

ECG is susceptible to parasitic myopulses due to the overlapping frequency bandwidth of ECG and EMG. EMG signal has a bandwidth of about 20-500 Hz and overlaps with the ECG frequency range. i.e. 0.05-150 Hz. These interferences occur due to movement of muscles and respiratory actions during ECG recording. Removal of EMG noise from ECG is an important criterion for proper analysis of the signal. In this study, we evaluated the denoising performance of wavelet functions by considering SNR as the quality judgement parameter. DWT provides better denoising over traditional filtering techniques. The level of decomposition plays an important role in denoising quality. There is variation in the performance of hard and soft thresholding with varying levels of decomposition. Hybrid thresholding is the best noise estimation and cancellation technique. Wavelet functions with more oscillations produce good denoising than others.

Originalspråkengelska
Titel på värdpublikationInternational Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016 - Proceedings
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1197-1201
Antal sidor5
ISBN (elektroniskt)9781509046201
DOI
StatusPublished - 2017 juni 22
Externt publiceradJa
Evenemang2016 IEEE International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016 - Paralakhernundi, Odisha, Indien
Varaktighet: 2016 okt. 32016 okt. 5

Konferens

Konferens2016 IEEE International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016
Land/TerritoriumIndien
OrtParalakhernundi, Odisha
Period2016/10/032016/10/05

Fingeravtryck

Utforska forskningsämnen för ”Quality evaluation of wavelet functions for myopulse suppression in electrocardiogram”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här