Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll

Carl Öberg, Bengt Rippe

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Oberg CM, Rippe B. Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll. Am J Physiol Renal Physiol 304: F781-F787, 2013. First published January 9, 2013; doi:10.1152/ajprenal.00621.2012.-In the current study we explore the electrostatic interactions on the transport of anionic Ficoll (aFicoll) vs. neutral Ficoll (nFicoll) over the glomerular filtration barrier (GFB) modeled as a charged fiber matrix. We first analyze experimental sieving data for the rat glomerulus, and second, we explore some of the basic implications of a theoretical model for the electrostatic interactions between a charged solute and a charged fiber-matrix barrier. To explain the measured difference in glomerular transport between nFicoll and aFicoll (Axelsson J, Sverrisson K, Rippe A, Fissell W, Rippe B. Am J Physiol 301: F708-F712, 2011), the present simulations demonstrate that the surface charge density needed on a charged fiber matrix must lie between -0.005 C/m(2) and -0.019 C/m(2), depending on the surface charge density of the solute. This is in good agreement with known surface charge densities for many proteins in the body. In conclusion, the current results suggest that electrical charge makes a moderate contribution to glomerular permeability, while molecular size and conformation seem to be more important. Yet, the weak electrical charge obtained in this study can be predicted to nearly totally exclude albumin from permeating through "high-selectivity" pathways in a charged-fiber matrix of the GFB.
Originalspråkengelska
Sidor (från-till)F781-F787
TidskriftAmerican Journal of Physiology-Renal Physiology
Volym304
Nummer6
DOI
StatusPublished - 2013

Ämnesklassifikation (UKÄ)

  • Urologi och njurmedicin

Fingeravtryck

Utforska forskningsämnen för ”Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating anionic from neutral Ficoll”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här