Quantum Confinement Suppressing Electronic Heat Flow below the Wiedemann–Franz Law

Danial Majidi, Martin Josefsson, Mukesh Kumar, Martin Leijnse, Lars Samuelson, Hervé Courtois, Clemens B. Winkelmann, Ville F. Maisi

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The Wiedemann–Franz law states that the charge conductance and the electronic contribution to the heat conductance are proportional. This sets stringent constraints on efficiency bounds for thermoelectric applications, which seek a large charge conduction in response to a small heat flow. We present experiments based on a quantum dot formed inside a semiconducting InAs nanowire transistor, in which the heat conduction can be tuned significantly below the Wiedemann–Franz prediction. Comparison with scattering theory shows that this is caused by quantum confinement and the resulting energy-selective transport properties of the quantum dot. Our results open up perspectives for tailoring independently the heat and electrical conduction properties in semiconductor nanostructures.

Originalspråkengelska
Sidor (från-till)630-635
Antal sidor6
TidskriftNano Letters
Volym22
Utgåva2
DOI
StatusPublished - 2022 jan. 26

Bibliografisk information

Publisher Copyright:
© 2022 American Chemical Society

Ämnesklassifikation (UKÄ)

  • Den kondenserade materiens fysik

Fingeravtryck

Utforska forskningsämnen för ”Quantum Confinement Suppressing Electronic Heat Flow below the Wiedemann–Franz Law”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här