Sammanfattning
In this paper we introduce the notion of complex isoparametric functions on Riemannian manifolds. These are then employed to devise a general method for constructing proper r-harmonic functions. We then apply this to construct the first known explicit proper r-harmonic functions on the Lie group semidirect products Rm⋉ Rn and Rm⋉ H 2n+1, where H 2n+1 denotes the classical (2 n+ 1) -dimensional Heisenberg group. In particular, we construct such examples on all the simply connected irreducible four-dimensional Lie groups.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 477-496 |
Antal sidor | 20 |
Tidskrift | Annals of Global Analysis and Geometry |
Volym | 58 |
Nummer | 4 |
Tidigt onlinedatum | 2020 sep. 21 |
DOI | |
Status | Published - 2020 nov. 1 |
Ämnesklassifikation (UKÄ)
- Geometri