r-Harmonic and complex isoparametric functions on the Lie groups Rm⋉Rn and Rm⋉H2n+1

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper we introduce the notion of complex isoparametric functions on Riemannian manifolds. These are then employed to devise a general method for constructing proper r-harmonic functions. We then apply this to construct the first known explicit proper r-harmonic functions on the Lie group semidirect products Rm⋉ Rn and Rm⋉ H 2n+1, where H 2n+1 denotes the classical (2 n+ 1) -dimensional Heisenberg group. In particular, we construct such examples on all the simply connected irreducible four-dimensional Lie groups.

Originalspråkengelska
Sidor (från-till)477-496
Antal sidor20
TidskriftAnnals of Global Analysis and Geometry
Volym58
Nummer4
Tidigt onlinedatum2020 sep. 21
DOI
StatusPublished - 2020 nov. 1

Ämnesklassifikation (UKÄ)

  • Geometri

Fingeravtryck

Utforska forskningsämnen för ”r-Harmonic and complex isoparametric functions on the Lie groups Rm⋉Rn and Rm⋉H2n+1”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här