TY - JOUR
T1 - Radiation-induced platelet-endothelial cell interactions are mediated by P-selectin and P-selectin glycoprotein ligand-1 in the colonic microcirculation.
AU - Röme, Andrada
AU - Thornberg, Charlotte
AU - Santén, Stefan
AU - Mattsson, Sören
AU - Jeppsson, Bengt
AU - Thorlacius, Henrik
PY - 2012
Y1 - 2012
N2 - BACKGROUND: Antiplatelet reagents have been reported to protect against intestinal damage associated with abdominal radiotherapy, but the mechanisms behind radiation-induced platelet-endothelium interactions are not known. We sought to define the adhesive mechanisms that regulate radiotherapy-induced platelet-endothelial cell interactions in the colon. METHODS: All mice except the controls were exposed to abdominal radiation with a single dose of 20 Gray. Mice were pretreated with an isotype-matched control antibody or a monoclonal antibody directed against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1). Platelet and leukocyte rolling and adhesion in the colon were determined by use of inverted intravital fluorescence microscopy 16 hours after radiation. Radiation-induced intestinal leakage of fluorescein isothiocyanate-conjugated dextran was examined in separate experiments. RESULTS: Immunoneutralization of P-selectin decreased radiation-provoked platelet rolling by 87% and adhesion by 63%. Moreover, inhibition of PSGL-1 decreased platelet rolling and adhesion by 77% and 83%, respectively, in animals exposed to radiation. Similarly, inhibition of P-selectin and PSGL-1 decreased radiation-induced leukocyte rolling and adhesion by more than 84% and 90%, respectively, in the colon. In contrast, inhibition of P-selectin or PSGL-1 had no impact on radiation-induced intestinal leakage. In addition, systemic depletion of platelets and leukocytes did not affect intestinal barrier dysfunction in radiated animals. CONCLUSION: This study demonstrates that radiation-provoked platelet and leukocyte accumulation are mediated in part by P-selectin and PSGL-1. Radiation-induced gut leakage, however, is independent of accumulation of platelets and leukocytes in the intestinal microvasculature.
AB - BACKGROUND: Antiplatelet reagents have been reported to protect against intestinal damage associated with abdominal radiotherapy, but the mechanisms behind radiation-induced platelet-endothelium interactions are not known. We sought to define the adhesive mechanisms that regulate radiotherapy-induced platelet-endothelial cell interactions in the colon. METHODS: All mice except the controls were exposed to abdominal radiation with a single dose of 20 Gray. Mice were pretreated with an isotype-matched control antibody or a monoclonal antibody directed against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1). Platelet and leukocyte rolling and adhesion in the colon were determined by use of inverted intravital fluorescence microscopy 16 hours after radiation. Radiation-induced intestinal leakage of fluorescein isothiocyanate-conjugated dextran was examined in separate experiments. RESULTS: Immunoneutralization of P-selectin decreased radiation-provoked platelet rolling by 87% and adhesion by 63%. Moreover, inhibition of PSGL-1 decreased platelet rolling and adhesion by 77% and 83%, respectively, in animals exposed to radiation. Similarly, inhibition of P-selectin and PSGL-1 decreased radiation-induced leukocyte rolling and adhesion by more than 84% and 90%, respectively, in the colon. In contrast, inhibition of P-selectin or PSGL-1 had no impact on radiation-induced intestinal leakage. In addition, systemic depletion of platelets and leukocytes did not affect intestinal barrier dysfunction in radiated animals. CONCLUSION: This study demonstrates that radiation-provoked platelet and leukocyte accumulation are mediated in part by P-selectin and PSGL-1. Radiation-induced gut leakage, however, is independent of accumulation of platelets and leukocytes in the intestinal microvasculature.
U2 - 10.1016/j.surg.2011.09.045
DO - 10.1016/j.surg.2011.09.045
M3 - Article
SN - 1532-7361
VL - 151
SP - 606
EP - 611
JO - Surgery
JF - Surgery
IS - 4
ER -