TY - JOUR
T1 - Rapid personalized AMR diagnostics using two-dimensional antibiotic resistance profiling strategy employing a thermometric NDM-1 biosensor
AU - Meng, Qinglai
AU - Liu, Shichao
AU - Meng, Jinhua
AU - Feng, Jiao
AU - Mecklenburg, Michael
AU - Zhu, Lei
AU - Zhou, Lifang
AU - Bülow, Leif
AU - Liu, Jianyi
AU - Song, Dewei
AU - Wu, Changxin
AU - Xie, Bin
PY - 2021
Y1 - 2021
N2 - Antimicrobial resistance (AMR) threatens global public health and modern surgical medicine. Expression of β-lactamase genes is the major mechanism by which pathogens become antibiotic resistant. Pathogens expressing extended spectrum β-lactamases (ESBL) and carbapenemases (CP) are especially difficult to treat and are associated with increased hospitalization and mortality rates. Despite considerable effort, identification of ESBLs and CPs in a clinically relevant timeframe remains challenging. In this study, a two-dimensional AMR profiling assay strategy was developed employing panels of antibiotics (penicillins, cephamycins, oximino-cephalosporins and carbapenems) and β-lactamases inhibitors (avibactam and EDTA). The assay required the development of a novel biosensor that employed New Delhi metallo-β-lactamase-1 (NDM-1) as the sensing element. Functionally probing β-lactamase activity using substrates and inhibitors combinatorically increased the informational content that enabled the development of assays capable of simultaneous, differential identification of multiple β-lactamases expressed in a single bacterial isolate. More specifically, the assay enabled the simultaneous identification of ESBL and CP in mock samples, as well as in an engineered construct which co-expressed these β-lactamases. The NDM-1 biosensor assay was 16 times and 8 times more sensitive than the ESBL Nordmann/Dortet/Poirel (NDP) and Carba Nordmann/Poirel (NP) assays, respectively. In a retrospective study, NDM-1 biosensor assays were able to differentially identify ESBLs, metallo-CPs and serine-CPs β-lactamases in 23 clinical isolates with 100% accuracy. An assay algorithm was developed which accelerated data analytics reducing turnaround to <1 h. The assay strategy integrated with AI-based data analytics has the potential to provide physicians with a comprehensive readout of patient AMR status.
AB - Antimicrobial resistance (AMR) threatens global public health and modern surgical medicine. Expression of β-lactamase genes is the major mechanism by which pathogens become antibiotic resistant. Pathogens expressing extended spectrum β-lactamases (ESBL) and carbapenemases (CP) are especially difficult to treat and are associated with increased hospitalization and mortality rates. Despite considerable effort, identification of ESBLs and CPs in a clinically relevant timeframe remains challenging. In this study, a two-dimensional AMR profiling assay strategy was developed employing panels of antibiotics (penicillins, cephamycins, oximino-cephalosporins and carbapenems) and β-lactamases inhibitors (avibactam and EDTA). The assay required the development of a novel biosensor that employed New Delhi metallo-β-lactamase-1 (NDM-1) as the sensing element. Functionally probing β-lactamase activity using substrates and inhibitors combinatorically increased the informational content that enabled the development of assays capable of simultaneous, differential identification of multiple β-lactamases expressed in a single bacterial isolate. More specifically, the assay enabled the simultaneous identification of ESBL and CP in mock samples, as well as in an engineered construct which co-expressed these β-lactamases. The NDM-1 biosensor assay was 16 times and 8 times more sensitive than the ESBL Nordmann/Dortet/Poirel (NDP) and Carba Nordmann/Poirel (NP) assays, respectively. In a retrospective study, NDM-1 biosensor assays were able to differentially identify ESBLs, metallo-CPs and serine-CPs β-lactamases in 23 clinical isolates with 100% accuracy. An assay algorithm was developed which accelerated data analytics reducing turnaround to <1 h. The assay strategy integrated with AI-based data analytics has the potential to provide physicians with a comprehensive readout of patient AMR status.
KW - Antimicrobial resistance
KW - Carbapenemase
KW - ESBL
KW - NDM-1
KW - Precision diagnostics
KW - Thermometric biosensor
U2 - 10.1016/j.bios.2021.113526
DO - 10.1016/j.bios.2021.113526
M3 - Article
C2 - 34325239
AN - SCOPUS:85111262334
SN - 0956-5663
VL - 193
JO - Biosensors and Bioelectronics
JF - Biosensors and Bioelectronics
M1 - 113526
ER -