Rate-Compatible Spatially-Coupled LDPC Code Ensembles With Nearly-Regular Degree Distributions

Walter Nitzold, Michael Lentmaier, Gerhard Fettweis

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

148 Nedladdningar (Pure)

Sammanfattning

Spatially-coupled regular LDPC code ensembles have outstanding performance with belief propagation decoding and can perform arbitrarily close to the Shannon limit without requiring irregular graph structures. In this paper, we are concerned with the performance and complexity of spatially-coupled ensembles with a rate-compatibility constraint. Spatially-coupled regular ensembles that support rate-compatibility through extension have been proposed before and show very good performance if the node degrees and the coupling width are chosen appropriately. But due to the strict constraint of maintaining a regular degree, there exist certain unfavorable rates that exhibit bad performance and high decoding complexity. We introduce an altered LDPC ensemble construction that changes the evolution of degrees over subsequent incremental redundancy steps in such a way, that the degrees can be kept low to achieve outstanding performance close to Shannon limit for all rates. These ensembles always outperform their regular counterparts at small coupling width.
Originalspråkengelska
Titel på värdpublikation2015 IEEE International Symposium on Information Theory (ISIT)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor41-45
Antal sidor5
ISBN (elektroniskt)978-1-4673-7704-1
DOI
StatusPublished - 2015
EvenemangIEEE International Symposium on Information Theory (ISIT), 2015 - Hong Kong, Kina
Varaktighet: 2015 juni 142015 juni 19

Konferens

KonferensIEEE International Symposium on Information Theory (ISIT), 2015
Land/TerritoriumKina
OrtHong Kong
Period2015/06/142015/06/19

Ämnesklassifikation (UKÄ)

  • Elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Rate-Compatible Spatially-Coupled LDPC Code Ensembles With Nearly-Regular Degree Distributions”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här