Realeasy: Real-Time capable Simulation to Reality Domain Adaptation

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

17 Nedladdningar (Pure)

Sammanfattning

We address the problem of insufficient quality of robot simulators to produce precise sensor readings for joint positions, velocities and torques. Realistic simulations of sensor readings are particularly important for real time robot control laws and for data intensive Reinforcement Learning of robot movements in simulation. We systematically construct two architectures based on Long Short-Term Memory to model the difference between simulated and real sensor readings for online and offline application. Our solution is easy to integrate into existing Robot Operating System frameworks and its formulation is neither robot nor task specific. The collected data set, the plug-and-play Realeasy model for the Panda robot and a reproducible real-time docker setup are shared alongside the code. We demonstrate robust behavior and transferability of the learned model between individual Franka Emika Panda robots. Our experiments show a reduction in torque mean squared error of at least one order of magnitude.
Originalspråkengelska
Titel på värdpublikation2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor2009-2016
Antal sidor8
ISBN (elektroniskt)978-1-6654-1873-7
ISBN (tryckt)978-1-6654-4809-3
DOI
StatusPublished - 2021
Evenemang2021 IEEE 17th International Conference on Automation Science and Engineering (CASE) - Lyon Centre de Congres, Lyon, Frankrike
Varaktighet: 2021 aug. 232021 aug. 27
Konferensnummer: 17
http://case2021.org

Konferens

Konferens2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
Förkortad titelCASE
Land/TerritoriumFrankrike
OrtLyon
Period2021/08/232021/08/27
Internetadress

Bibliografisk information

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)
  • Robotteknik och automation

Fingeravtryck

Utforska forskningsämnen för ”Realeasy: Real-Time capable Simulation to Reality Domain Adaptation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här