Sammanfattning
The machining of Fiber Reinforced Polymers (FRP) is accompanied by specific defects such as delamination, uncut fibers, and others. Such defects are unique in their shape and size for different FRP types, used tools, and applied cutting conditions. Therefore, defect recognition and quantification remain a central challenge in the quality control of FRP components from an accuracy and time balance perspective. The study presents the implementation of Machine Learning techniques for automated recognition of the hole defects resulting from drilling Flax/PLA biocomposites using HSS drills with various cutting data. The paper discusses the effectiveness and stability of the developed solution.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | 19th CIRP Conference on Modeling of Machining Operations |
Redaktörer | Volker Schulze , Dirk Biermann |
Förlag | Elsevier |
Sidor | 384-389 |
Antal sidor | 6 |
DOI | |
Status | Published - 2023 |
Evenemang | 19th CIRP Conference on Modeling of Machining Operations, CMMO 2023 - Karlsruhe, Tyskland Varaktighet: 2023 maj 31 → 2023 juni 2 |
Publikationsserier
Namn | Procedia CIRP |
---|---|
Förlag | Elsevier |
Volym | 117 |
ISSN (tryckt) | 2212-8271 |
Konferens
Konferens | 19th CIRP Conference on Modeling of Machining Operations, CMMO 2023 |
---|---|
Land/Territorium | Tyskland |
Ort | Karlsruhe |
Period | 2023/05/31 → 2023/06/02 |
Bibliografisk information
Publisher Copyright:© 2023 Elsevier B.V.. All rights reserved.
Ämnesklassifikation (UKÄ)
- Produktionsteknik, arbetsvetenskap och ergonomi