Recognition of drilling-induced defects in Fiber Reinforced Polymers using Machine Learning

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The machining of Fiber Reinforced Polymers (FRP) is accompanied by specific defects such as delamination, uncut fibers, and others. Such defects are unique in their shape and size for different FRP types, used tools, and applied cutting conditions. Therefore, defect recognition and quantification remain a central challenge in the quality control of FRP components from an accuracy and time balance perspective. The study presents the implementation of Machine Learning techniques for automated recognition of the hole defects resulting from drilling Flax/PLA biocomposites using HSS drills with various cutting data. The paper discusses the effectiveness and stability of the developed solution.

Originalspråkengelska
Titel på värdpublikation19th CIRP Conference on Modeling of Machining Operations
RedaktörerVolker Schulze , Dirk Biermann
FörlagElsevier
Sidor384-389
Antal sidor6
DOI
StatusPublished - 2023
Evenemang19th CIRP Conference on Modeling of Machining Operations, CMMO 2023 - Karlsruhe, Tyskland
Varaktighet: 2023 maj 312023 juni 2

Publikationsserier

NamnProcedia CIRP
FörlagElsevier
Volym117
ISSN (tryckt)2212-8271

Konferens

Konferens19th CIRP Conference on Modeling of Machining Operations, CMMO 2023
Land/TerritoriumTyskland
OrtKarlsruhe
Period2023/05/312023/06/02

Bibliografisk information

Publisher Copyright:
© 2023 Elsevier B.V.. All rights reserved.

Ämnesklassifikation (UKÄ)

  • Produktionsteknik, arbetsvetenskap och ergonomi

Fingeravtryck

Utforska forskningsämnen för ”Recognition of drilling-induced defects in Fiber Reinforced Polymers using Machine Learning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här