Resolving Entropy Growth from Iterative Methods

Viktor Linders, Hendrik Ranocha, Philipp Birken

Forskningsoutput: Working paper/PreprintPreprint (i preprint-arkiv)

Sammanfattning

We consider entropy conservative and dissipative discretizations of nonlinear conservation laws with implicit time discretizations and investigate the influence of iterative methods used to solve the arising nonlinear equations. We show that Newton's method can turn an entropy dissipative scheme into an anti-dissipative one, even when the iteration error is smaller than the time integration error. We explore several remedies, of which the most performant is a relaxation technique, originally designed to fix entropy errors in time integration methods. Thus, relaxation works well in consort with iterative solvers, provided that the iteration errors are on the order of the time integration method. To corroborate our findings, we consider Burgers' equation and nonlinear dispersive wave equations. We find that entropy conservation results in more accurate numerical solutions than non-conservative schemes, even when the tolerance is an order of magnitude larger.
Originalspråkengelska
UtgivarearXiv.org
DOI
StatusPublished - 2023

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”Resolving Entropy Growth from Iterative Methods”. Tillsammans bildar de ett unikt fingeravtryck.
  • Hendrik Ranocha

    Linders, V. (Värd)

    2023 feb. 62023 feb. 10

    Aktivitet: Värd för gäst

  • University of Cologne

    Linders, V. (Gästforskare), Gassner, G. (Roll ej angiven) & Birken, P. (Roll ej angiven)

    2023 jan. 92023 jan. 20

    Aktivitet: Besök vid en extern institutionForskning eller undervisning vid extern organisation

Citera det här