Robust Fitting for Multiple View Geometry

Olof Enqvist, Erik Ask, Fredrik Kahl, Karl Åström

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

How hard are geometric vision problems with outliers? We show that for most fitting problems, a solution that minimizes the num- ber of outliers can be found with an algorithm that has polynomial time- complexity in the number of points (independent of the rate of outliers). Further, and perhaps more interestingly, other cost functions such as the truncated L2 -norm can also be handled within the same framework with the same time complexity. We apply our framework to triangulation, relative pose problems and stitching, and give several other examples that fulfill the required condi- tions. Based on efficient polynomial equation solvers, it is experimentally demonstrated that these problems can be solved reliably, in particular for low-dimensional models. Comparisons to standard random sampling solvers are also given.
Originalspråkengelska
Titel på värdpublikationLecture Notes in Computer Science (Computer Vision - ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Part I )
RedaktörerAndrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, Cordelia Schmid
FörlagSpringer
Sidor738-751
Antal sidor14
Volym7572
ISBN (tryckt)978-3-642-33717-8 (print), 978-3-642-33718-5 (online)
DOI
StatusPublished - 2012
Evenemang12th European Conference on Computer Vision (ECCV 2012) - Florence, Italien
Varaktighet: 2012 okt. 72012 okt. 13

Publikationsserier

Namn
Volym7572
ISSN (tryckt)1611-3349
ISSN (elektroniskt)0302-9743

Konferens

Konferens12th European Conference on Computer Vision (ECCV 2012)
Land/TerritoriumItalien
OrtFlorence
Period2012/10/072012/10/13

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Robust Fitting for Multiple View Geometry”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här