Robust Non-Negative Least Squares Using Sparsity

Filip Elvander, Stefan Ingi Adalbjörnsson, Andreas Jakobsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Sparse, non-negative signals occur in many applications. To recover such signals, estimation posed as non-negative least squares problems have proven to be fruitful. Efficient algorithms with high accuracy have been proposed, but many of them assume either perfect knowledge of the dictionary generating the signal, or attempts to explain deviations from this dictionary by attributing them to components that for some reason is missing from the dictionary. In this work, we propose a robust non-negative least squares algorithm that allows the generating dictionary to differ from the assumed dictionary, introducing uncertainty in the setup. The proposed algorithm enables an improved modeling of the measurements, and may be efficiently implemented using a proposed ADMM implementation. Numerical examples illustrate the improved performance as compared to the standard non-negative LASSO estimator.
Originalspråkengelska
Titel på värdpublikation2016 24th European Signal Processing Conference (EUSIPCO)
FörlagEURASIP
Sidor61-65
Antal sidor5
ISBN (elektroniskt)978-0-9928-6265-7
DOI
StatusPublished - 2016 dec. 1
Evenemang24th European Signal Processing Conference, EUSIPCO 2016 - Budapest, Ungern
Varaktighet: 2016 aug. 282016 sep. 2

Publikationsserier

NamnEuropean Signal Processing Conference (EUSIPCO)
FörlagEURASIP
ISSN (elektroniskt)2076-1465

Konferens

Konferens24th European Signal Processing Conference, EUSIPCO 2016
Land/TerritoriumUngern
OrtBudapest
Period2016/08/282016/09/02

Ämnesklassifikation (UKÄ)

  • Signalbehandling
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Robust Non-Negative Least Squares Using Sparsity”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här