Scalable Reinforcement Learning for Linear-Quadratic Control of Networks

Johan Olsson, Runyu(Cathy) Zhang, Emma Tegling, Na Li

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Distributed optimal control is known to be challenging and can become intractable even for linear-quadratic regulator problems. In this work, we study a special class of such problems where distributed state feedback controllers can give near-optimal performance. More specifically, we consider networked linear-quadratic controllers with decoupled costs and spatially exponentially decaying dynamics. We aim to exploit the structure in the problem to design a scalable reinforcement learning algorithm for learning a distributed controller. Recent work has shown that the optimal controller can be well approximated only using information from a kq -neighborhood of each agent. Motivated by these results, we show that similar results hold for the agents' individual value and Q-functions. We continue by designing an algorithm, based on the actor-critic framework, to learn distributed controllers only using local information. Specifically, the Q-function is estimated by modifying the Least Squares Temporal Difference for Q-functions method to only use local information. The algorithm then updates the policy using gradient descent. Finally, we evaluate the algorithm through simulations that indeed suggest near-optimal performance.

Originalspråkengelska
Titel på värdpublikationProceedings of the American Control Conference
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1813-1818
Antal sidor6
ISBN (elektroniskt)9798350382655
DOI
StatusPublished - 2024
Evenemang2024 American Control Conference, ACC 2024 - Toronto, Kanada
Varaktighet: 2024 juli 102024 juli 12

Publikationsserier

NamnProceedings of the American Control Conference
ISSN (tryckt)0743-1619

Konferens

Konferens2024 American Control Conference, ACC 2024
Land/TerritoriumKanada
OrtToronto
Period2024/07/102024/07/12

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”Scalable Reinforcement Learning for Linear-Quadratic Control of Networks”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här