TY - JOUR
T1 - Self-Diffusive Properties of the Intrinsically Disordered Protein Histatin 5 and the Impact of Crowding Thereon
T2 - A Combined Neutron Spectroscopy and Molecular Dynamics Simulation Study
AU - Fagerberg, Eric
AU - Lenton, Samuel
AU - Nylander, Tommy
AU - Seydel, Tilo
AU - Skepö, Marie
N1 - Publisher Copyright:
© 2022 The Authors. Published by American Chemical Society.
PY - 2021
Y1 - 2021
N2 - Intrinsically disordered proteins (IDPs) are proteins that, in comparison with globular/structured proteins, lack a distinct tertiary structure. Here, we use the model IDP, Histatin 5, for studying its dynamical properties under self-crowding conditions with quasi-elastic neutron scattering in combination with full atomistic molecular dynamics (MD) simulations. The aim is to determine the effects of crowding on the center-of-mass diffusion as well as the internal diffusive behavior. The diffusion was found to decrease significantly, which we hypothesize can be attributed to some degree of aggregation at higher protein concentrations, (≥100 mg/mL), as indicated by recent small-angle X-ray scattering studies. Temperature effects are also considered and found to, largely, follow Stokes-Einstein behavior. Simple geometric considerations fail to accurately predict the rates of diffusion, while simulations show semiquantitative agreement with experiments, dependent on assumptions of the ratio between translational and rotational diffusion. A scaling law that previously was found to successfully describe the behavior of globular proteins was found to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations show that the width of the distribution with respect to diffusion is not a simplistic mirroring of the distribution of radius of gyration, hence, displaying the particular features of IDPs that need to be accounted for.
AB - Intrinsically disordered proteins (IDPs) are proteins that, in comparison with globular/structured proteins, lack a distinct tertiary structure. Here, we use the model IDP, Histatin 5, for studying its dynamical properties under self-crowding conditions with quasi-elastic neutron scattering in combination with full atomistic molecular dynamics (MD) simulations. The aim is to determine the effects of crowding on the center-of-mass diffusion as well as the internal diffusive behavior. The diffusion was found to decrease significantly, which we hypothesize can be attributed to some degree of aggregation at higher protein concentrations, (≥100 mg/mL), as indicated by recent small-angle X-ray scattering studies. Temperature effects are also considered and found to, largely, follow Stokes-Einstein behavior. Simple geometric considerations fail to accurately predict the rates of diffusion, while simulations show semiquantitative agreement with experiments, dependent on assumptions of the ratio between translational and rotational diffusion. A scaling law that previously was found to successfully describe the behavior of globular proteins was found to be inadequate for the IDP, Histatin 5. Analysis of the MD simulations show that the width of the distribution with respect to diffusion is not a simplistic mirroring of the distribution of radius of gyration, hence, displaying the particular features of IDPs that need to be accounted for.
U2 - 10.1021/acs.jpcb.1c08976
DO - 10.1021/acs.jpcb.1c08976
M3 - Article
C2 - 35044776
AN - SCOPUS:85123846200
SN - 1520-6106
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
ER -